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Abstract We study a call center model with a postponed callback option. A customer1

at the head of the queue whose elapsed waiting time achieves a given threshold receives2

a voice message mentioning the option to be called back later. This callback option3

differs from the traditional ones found in the literature where the callback offer is4

given at customer’s arrival. We approximate this system by a two-dimensional Markov 15

chain, with one dimension being a unit of a discretization of the waiting time. We6

next show that this approximation model converges to the exact one. This allows us to7

obtain explicitly the performance measures without abandonment and to compute them8

numerically otherwise. From the performance analysis, we derive a series of practical9

insights and recommendations for a clever use of the callback offer. In particular, we10

show that this time-based offer outperforms traditional ones when considering the11

waiting time of inbound calls. 212
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1 Introduction15

Call centers serve as the public face in various areas and industries: insurance compa-16

nies, emergency centers, banks, information centers, help desks, telemarketing, just to17

name a few. The success of call centers is due to the technological advances in infor-18

mation and communications systems. The most used form of communication is the19

direct telephone contact. However, in the context of highly congested call centers, the20

use of alternative options can be proposed to customers so as to better match demand21

and capacity. Alternative options could be email, chat, blog, callback service, etc.22

The callback offer allows the call center to change the nature of the channel from an23

inbound call to an outbound one. For the call center manager, this change is valuable24

because it reduces the congestion in the inbound queue. Another important aspect in25

call centers is customers’ abandonment (e.g., see Mandelbaum and Zeltyn 2004; Dai26

and He 2012). While waiting in the inbound queue, a customer may decide to leave27

the system without being served. This customer is then lost for the call center without28

possibilities to be recontacted. Instead, an outbound customer can be reached later.29

Even with a long delay before being called back, this customer is potentially not lost.30

From customers’ perspective, the willingness to accept future processing depends on31

the urge to get an answer and the waiting cost. If waiting is painful and getting an32

answer is not urgent, then a customer may accept the callback offer.33

In practice, several types of callback offers are developed with the same purpose of34

changing inbound calls into outbound ones. A large number of patents reflect this wide35

variety and the technological challenges to implement this option in the Automatic36

Call Distributor (ACD) (Livanos 1994; Metcalf 2006; Rafter et al. 2010; Blaesi 2015).37

Nevertheless, from our discussion with our partner INTERACTIV GROUP, the effects38

of the callback option are not well understood by managers and the implementation39

still needs to be improved to achieve some service level objectives.40

In call centers, a percentile of the waiting time is the usually chosen as a service41

level objective. This metric is often preferred to the average speed of answer because42

the former was perceived to be more informative; see Bailey and Sweeney (2003). It43

is therefore important for managers to develop a callback offer which can be adjusted44

to this type of service level agreement. At the same time, the callback offer should be45

carefully used. Even when the callback offer is accepted by a customer, most customers46

would prefer being served directly. So, the callback offer should not be automatically47

proposed, but should be proposed in a way which allows the call center to control the48

proportion of outbound calls. As mentioned above, the other aspect is abandonment.49

In case of a too important use of the callback offer, the proportion of non-abandoning50

customers may get too important which in turn may lead to the impossibility to ensure51

a sufficiently short delay for callback customers. In summary, an efficient callback52

offer should:53

– Help the manager to achieve a service level objective for inbound calls;54

– Control the proportion of outbound calls;55
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Call centers with a postponed callback offer

– Be easy to implement in the ACD;56

– Be sufficiently simple to develop staffing solutions and predict performance.57

In the literature on operations research, different callback options have already been58

studied and optimized (Armony and Maglaras 2004a, b; Kim et al. 2012; Dudin et al.59

2013; Legros et al. 2016). These callback models will be discussed in detail below.60

A common element in these models is that the decision to propose a callback offer61

is based on the system size. For instance, above a threshold on the queue length, a62

callback option is proposed to all arriving customers. Unlike these models, we propose63

a new callback option given to the first customer in line when its experienced waiting64

time reaches a given waiting time threshold, the service level objective. We call this65

callback option the postponed call back offer.66

This makes sense both from theoretical and practical points of view, especially for67

objectives that are functions of the waiting time such as the percentage of calls that68

have waited shorter than a specific threshold. One can imagine, and it is indeed shown69

in this paper, that a policy that uses actual waiting time information performs well for70

this type of objective.71

The motivation to let customers wait before the callback offer in our model is to72

avoid giving a callback offer to a customer who could have been served in a reasonable73

time. If a callback offer is given at arrival based eventually on the queue size, it may74

be possible due to the variability in the service times to encounter a series of small75

service times which would have enable to serve this customer in a reasonable time.76

By letting the customer wait before the callback offer, the call center gives a chance77

to serve the customer without using the callback option. Recall that most customers78

prefer being directly served than being called back later.79

In addition, we assume that customers have a probabilistic reaction to the callback80

offer and that a non-preemptive priority is given to inbound calls since these ones are81

more urgent. A precise definition of the queueing model is given in Sect. 2. Another82

value of this callback model is that it is completely tractable. Without abandonment,83

closed-form expressions of the performance measures can be obtained. This allows for84

workforce management solutions and a simple implementation of the callback offer.85

In Sect. 3, we determine the proportion of customers who have waited less than the86

waiting time objective and the proportion of callback customers. In order to differenti-87

ate between inbound and outbound customers, we are also interested in their respected88

expected waiting times. Closed-form expressions of these performance measures are89

derived without abandonment, and a numerical method is developed with abandon-90

ment. The difficulty to compute these metrics is that the decision to change a high91

priority customer into a low priority one does not depend on a classical state definition92

like the number of high priority customers, but on the experienced waiting time of a93

given customer. To overcome this difficulty, we propose the following approach:94

1. We develop an approximating model, in which the waiting time of the first customer95

in line is modeled by a succession of exponential phases. The number of waiting96

phases and the elapsing of time rate per phase are the control parameters of the97

approximation.98

2. Since this new model is a Markov chain, the transitions rate can be obtained and99

the stationary probabilities can be derived.100
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3. Finally, as the control parameters of the approximating model tend to infinity, we101

show that this model converges to the exact one which in turn leads to the exact102

performance measures.103

The key operational findings derived in Sect. 4 are that (1) the callback offer can104

be used as a tool to reduce a waiting time percentile, (2) the value of a callback option105

is more apparent under intermediate loaded situations, with abandonment, for small106

call center, or when customers react mostly positively to the callback option, (3) two107

rational strategies are possible for customers; either they all accept or they all reject the108

callback offer, (4) the time at which the callback offer is proposed should be sufficiently109

postponed, especially when the abandonment is significant or when customers do not110

have a rational reaction to the callback offer, and (5) compared to a non-postponed111

callback option, a postponed offer improves the waiting time of inbound calls and the112

proportion of abandonment, especially in highly loaded situations.113

In what follows, we discuss the related literature.114

Literature review There is an extensive and growing literature on call centers. We115

refer the reader to Gans et al. (2003) and Akşin et al. (2007) for an overview. The116

main topics encountered in call center studies are routing decisions (e.g., see Helber117

and Henken 2010; Robbins and Harrison 2010; Legros 2016), staffing (e.g., see Cezik118

and L’Ecuyer 2008; Liao et al. 2012), or performance evaluation (e.g., see Koole and119

Mandelbaum 2002; Stolletz and Helber 2004; Shumsky 2004). Our article focuses on120

performance evaluation based on a particular routing mechanism defined through a121

callback offer.122

There are a few papers on different callback options in call centers. Armony and123

Maglaras (2004a) consider a model in which customers are given a choice of whether124

to wait online for their call to be answered or to leave a number and be called back125

within a specified time or to immediately balk. Upon arrival, customers are informed126

(or know from prior experience) of the expected waiting time if they choose to wait and127

the delay guarantee for the callback option. Their decision is probabilistic and based128

on this information. Under the heavy traffic regime, Armony and Maglaras (2004a)129

develop an estimation scheme for the anticipated real-time delay that is asymptotically130

correct. They also propose an asymptotically optimal routing policy that minimizes131

real-time delay subject to a deadline on the postponed service mode. Armony and132

Maglaras (2004b) develop an asymptotically optimal routing rule, characterize the133

unique equilibrium regime of the system, and propose a staffing rule that picks the134

minimum number of agents that satisfies a set of operational constraints on the per-135

formance of the system.136

There are two recent papers by Kim et al. (2012) and Dudin et al. (2013). Kim137

et al. (2012) consider a call center model with a callback option where the capacity138

of the queue for the inbound calls is finite. Customer balking and abandonment are139

allowed. They provide an efficient algorithm for calculating the stationary probabilities140

of the system. Moreover, they derive the Laplace–Stieltjes transform of the sojourn141

time distribution of virtual customers. Dudin et al. (2013) consider a slightly different142

model, where agents make outbound calls to those lost customers. There are two agent143

teams: one that handles in priority inbound calls and another that handles in priority144
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Call centers with a postponed callback offer

outbound calls. They compute the stationary probabilities and deduce from that some145

performance measures. They also numerically address the staffing issue of the two146

teams.147

Finally, Legros et al. (2016) consider in their callback model, a probabilistic cus-148

tomer reaction to the callback offer. They show using a Markov decision process149

approach that the optimal reservation policy for inbound calls is of switch type. There-150

after, the system performance measures are computed under the optimal policy. It151

appears from this study that the value of the callback offer is apparent for congested152

situations and that the benefits of a reservation policy are more apparent in large call153

centers, while they almost disappear in the extreme situations of light or heavy work-154

loads. Moreover, if balking and abandonment are very high or if the overall treatment155

time spent to serve an outbound call is very large compared to that of an inbound one,156

there is a value in delaying the proposition of the callback offer.157

Another stream of literature less closely related to our article deals with the analysis158

of queueing multi-channel call center models with blending. This can be related to159

callback models by assuming an infinite amount of customers to callback at the next160

working period. Some papers focus on performance evaluation, and others address the161

analysis of blending policies or staffing decisions. Deslauriers et al. (2007) develop162

various continuous Markov chain models for a call center with inbound and outbound163

calls. The authors consider a threshold policy and characterize the rate of outbounds164

and the waiting time distribution of inbounds. Other call center papers address the165

analysis of blending policies. Gans and Zhou (2003) and Bhulai and Koole (2003)166

prove that a threshold policy on the number of idle agents is optimal to maximize167

the outbound throughput under a service level constraint on the inbound waiting time.168

Similar results are also found in Legros et al. (2015), for a non-stationary model where169

inbound calls arrive according to a non-homogeneous Poisson process. Pang and Perry170

(2014) consider a large call blending model and propose a logarithmic safety staffing171

rule, combined with a threshold control policy to ensure that agents’ utilization is172

always close to one with always idle agents present.173

2 Setting174

In this section, we define the queueing model and present an approximation model175

which can be studied through a Markov chain analysis.176

2.1 Queueing model177

We consider a multi-server single queue with s identical, parallel servers. The arrival178

process of customers is Poisson with rate λ. Service times are independent and expo-179

nentially distributed with rate µ. When a customer calls, if at least one agent is180

available, then this customer is directly served; otherwise, he/she is routed to a first-181

come first-served queue called Queue 1. After having waited K time units, the first182

customer in line waiting in Queue 1 hears a voice message, proposing to be called183

back later. We assume that a proportion r of customers accepts the callback offer and184

becomes then outbound calls. These calls are routed to another queue called Queue185
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B. Legros et al.

Fig. 1 Queueing model

2. Since inbound calls are more urgent, a non-preemptive priority is given to Queue186

1. Another reason for the priority of inbound calls is the cost of waiting. In many call187

centers, inbound customers pay per waiting time unit, whereas an outbound customer188

would not pay. A priority for inbound calls would then help to reduce their waiting189

cost.190

Moreover, customers’ patience is limited. We assume that the patience of a customer191

in Queue 1 is exponentially distributed with rate β. Customers in Queue 2 are infinitely192

patient since they are outbound calls. Our queueing model is equivalent to a particular193

V-queueing model with two queues: Queue 1 and Queue 2, where customers in Queue194

1 have a non-preemptive priority over customers in Queue 2. The arrival process in195

Queue 1 is Poisson with parameter λ, and the arrival process in Queue 2 is generated196

by customers in Queue 1 who have waited exactly K time units without being served197

and accept the callback offer. This equivalent queueing model is depicted in Fig. 1.198

For this queueing model, we are interested in the proportion of callback customers,199

Pc, the proportion of abandonment, Pa , the expected waiting time of customers served200

from Queue 1, E(W1), the expected waiting time of callback customers, E(W2) (it201

includes the time also spent in Queue 1), and the probability of waiting less than the202

instant at which the callback option is proposed, P(W < K ), where W is the waiting203

time of an arbitrary customer. Note that without abandonment, this queueing model204

can be seen as an M/M/s queue where the queue discipline has been modified.205

2.2 An approximating model206

In order to have a Markov chain, one may only have exponential durations between two207

successive events. Yet, the time at which the callback offer is given is deterministic.208

To overcome this difficulty, we develop here an approximating model in which all209

durations are exponential. The resulting Markov chain will be studied in Sect. 3 to210

obtain the performance measures of the exact model.211

The approximation is based on a Markov chain where the states constitute a discrete212

representation of the waiting time of the first customer in line (FIL) in Queue 1 when213

one or more customers are waiting. The waiting time of the FIL in Queue 1 is modeled214

by a succession of exponential phases with rate γ per phase as proposed in Koole215

et al. (2012). Instead, Queue 2 is modeled as in most queueing models by its number216

of customers. The number of waiting phases in Queue 1 after which the callback offer217

is proposed to the FIL is denoted by n. After leaving this waiting phase, a customer—if218
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Call centers with a postponed callback offer

not served—is routed to Queue 2 with probability r or stays in Queue 1 with probability219

1 − r . The queue discipline in both queues is still FCFS.220

After giving a state definition and the transition rates, we will explain how this221

approximation converges to the real model.222

State definition The system is modeled using a two-dimensional continuous-time223

Markov chain. We denote by (x, y) a state of the system for x ≥ −s and y ≥ 0,224

where x represents the servers state or the waiting time in Queue 1 and y represents225

the number of customers in Queue 2. More precisely, states with −s ≤ x ≤ 0 corre-226

spond to an empty Queue 1 and s + x busy agents. States with x > 0 correspond to227

the phase at which the FIL in Queue 1 is waiting and all agents are busy.228

Transitions We next describe the seven possible transitions in the Markov chain. When229

the FIL changes, because of a service completion or an abandonment (see transition230

Type 5), or because of the current FIL moving to Queue 2 (see transition Type 8), the231

waiting time phase changes from x > 0 to x − h with probability qx,x−h . This means232

that either the new first in line is in waiting phase x − h > 0 or that Queue 1 is empty233

if x − h = 0, for 0 ≤ h < x . The probabilities qx,x−h are given in Theorem 2 of234

Legros et al. (2017) by235

qx,x−h =

⎛

⎝1 −

[

1 +
λ

γ

(

γ

γ + β

)x−h
]−1

⎞

⎠ ·

x
∏

k=x−h+1

[

1 +
λ

γ

(

γ

γ + β

)k
]−1

236

for 0 ≤ h < x and237

qx,0 =

x
∏

k=1

[

1 +
λ

γ

(

γ

γ + β

)k
]−1

.238

Moreover, the probability of abandonment after a given waiting phase is
β

γ+β
(see239

Table 1, Line 3 in Legros et al. 2017)240

1. An arrival with rate λ while Queue 1 is empty (−s ≤ x ≤ 0, y = 0), which241

changes the state to (x + 1, 0). If x < 0, then the number of busy servers is242

increased by 1. Otherwise, if x = 0, then the FIL entity is created.243

2. A service completion with rate (s + x)µ while Queues 1 and 2 are empty (−s <244

x ≤ 0, y = 0), which changes the state to (x − 1, y). The number of busy servers245

is reduced by 1.246

3. A service completion with rate sµ while Queue 1 is empty, Queue 2 is not empty247

and all servers are busy (x = 0, y ≥ 1), which changes the state to (0, y − 1). The248

number of customers in Queue 2 is reduced by 1.249

4. A service completion with rate sµqx,x−h or an abandonment with rate γ
β

γ+β
while250

Queue 1 is not empty (x > 0, y ≥ 0), which changes the state to (x − h, y), that251

is, the new FIL is in waiting phase x − h.252
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5. A phase increase without abandonment with rate γ
γ

γ+β
while Queue 1 is not empty253

and the FIL is not in waiting phase n (0 < x < n, y ≥ 0), which changes the state254

to (x + 1, y). The waiting phase of the FIL is increased by 1.255

6. A phase increase with rate (1 − r)γ while the FIL is in waiting phase n (y ≥ 0),256

which changes the state to (n + 1, y). The waiting phase of the FIL is increased257

by 1.258

7. A phase increase with rate rγ qx,x−h while the FIL in Queue 1 is in waiting phase259

n (x = n, y ≥ 0), which changes the state to (x − h, y + 1), that is, the new FIL is260

in waiting phase x − h and the number of customers in Queue 2 is increased by 1.261

Convergence to the real system We approximate the deterministic duration before262

giving the callback offer by an Erlang random variable with n phases and rate γ per263

phase. We choose n and γ such that n
γ

�
= K . The Laplace transform of the Erlang264

distribution with parameters n and γ is
(

γ
γ+s

)n

. We have265

(

γ

γ + s

)n

= en ln((1+s/γ )−1) ∼
γ→∞

en ln(1−s/γ ) ∼
γ→∞

e−ns/γ = e−sK ,266

where we write f (a) ∼
a→a0

g(a) to express that lim
a→a0

f (a)
g(a)

= 1, for a0 ∈ R. Applying267

the Levy continuity theorem for Laplace transforms, this result ensures that as n and268

γ go to infinity, the considered Erlang random variable converges in distribution to269

the deterministic duration K .270

The other approximation is the transition from Queue 1 to Queue 2. It is assumed271

in our modeling that after one γ -transition from state x = n, only one customer is272

routed to Queue 2. However, more than one customer could be in phase n (as in any273

other phase). More precisely (with no abandonment), given that one customer is in274

phase n, this customer is the only one with probability
γ

λ+γ
, or two customers or more275

are in phase n with probability λ
λ+γ

. Again, as γ tends to infinity, the probability that276

only one customer is in one phase is equal to one.277

3 Performance analysis278

In Sect. 3.1, we derive explicitly the performance measures without abandonment. The279

method developed here is adapted numerically in Sect. 3.1.2 to include abandonment.280

3.1 Explicit performance measures without abandonment281

In Sect. 3.1, we give the stationary probabilities of the discretized system. Next, in282

Sect. 3.1.2, we let the elapsing of time rate tends to infinity in order to obtain the exact283

performance measures.284
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Call centers with a postponed callback offer

3.1.1 Stationary probabilities285

Recall that in the case with no abandonment (β = 0), we simply have286

qx,x−h =

(

λ

λ + γ

) (

γ

λ + γ

)h

287

for 0 ≤ h < x and288

qx,0 =

(

γ

λ + γ

)x

289

as in Theorem 2.1 of Koole et al. (2012). Let us introduce the notations a = λ
µ

and290

aγ = s ·
a+γ /µ
s+γ /µ

. The ratio a represents the traffic intensity of the system and aγ is a291

modified version of the traffic intensity. The parameter aγ is an increasing function of292

γ which is equal to a for γ = 0 and equal to s for γ = ∞. Proposition 1 gives the293

stationary probability px,y to be in state (x, y) for x ≥ −s and y ≥ 0.294

Proposition 1 Under the stability condition λ < sµ, we have295

p−s,0 =

⎡

⎣

s−1
∑

x=0

ax

x !
+

as

s!

(

1 + a
s

λ
γ

− r a
s

(

1 + λ
γ

)

( aγ

s

)n
)

(1 − a/s)
(

1 − r a
s

( aγ

s

)n
)

⎤

⎦

−1

,296

px−s,0 =
ax

x !
· p−s,0, for 0 ≤ x ≤ s,297

px,0 = p0,0
λ

γ

( aγ

s

)x
(sµ − λ(1 − r)) − rλ

( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n , for 1 ≤ x ≤ n,298

px,0 = p0,0(1 − r)
λ

γ

(sµ − λ)
( aγ

s

)x−n

sµ − λ(1 − r) − rλ
( aγ

s

)n , for x > n,299

px,y =
λ

γ
p0,0

( aγ

s

)x
(sµ − λ(1 − r)) − rλ

( aγ

s

)n

sµ − λ
( aγ

s

)n

sµ − λ(1 − r)
( aγ

s

)x
− rλ

( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n300

×

(

rλ

sµ

sµ − λ
( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n

)y

, for 1 ≤ x ≤ n, y ≥ 1,301

px,y = (1 − r)

(aγ

s

)x−n

pn,y, for x > n, y ≥ 1.302

303

Proof We adopt the following approach to derive the stationary probabilities. First,304

we determine a set of equilibrium equations. Next, using these equilibrium equations305

we derive a simple explicit expression of the probability that the FIL in Queue 1 is306

in waiting phase x ; px =
∑∞

y=0 px,y for x ≥ 0. Considering this probability leads to307

a one-dimensional problem which in turn allows us to compute the probability of an308

empty system using the normalizing condition. Finally, we derive the other stationary309

probabilities.310
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Equilibrium equations Let S be the state space. Consider the cut between A1 =311

{(−s, 0), . . . , (x, 0)} and S\A1, where x ≥ −s. Observing that
(

γ
λ+γ

)x

+312

∑x−1
l=h

(

λ
λ+γ

) (

γ
λ+γ

)l

=
(

γ
λ+γ

)h

, we deduce that the cumulative transition rate from313

state (x, y) to states (0, y), (1, y) · · · (x − h, y) is sµ

(

γ

λ + γ

)h

, for 0 ≤ h < x < n314

and y ≥ 0. Therefore, by equating flows across the cut, one may write315

λpx,0 = (s + x + 1)µpx+1,0, for − s ≤ x < 0, (1)316

λp0,0 = sµp0,1 + sµ

∞
∑

i=1

pi,0

(

γ

λ + γ

)i

, (2)317

γ px,0 = sµp0,1 + sµ

∞
∑

i=x+1

pi,0

(

γ

λ + γ

)i−x

, for 0 < x ≤ n, (3)318

γ px,0 + rγ pn,0 = sµp0,1 + sµ

∞
∑

i=x+1

pi,0

(

γ

λ + γ

)i−x

, for x > n. (4)319

320

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where y ≥ 0. This321

leads to322

rγ pn,y = sµp0,y+1, for y ≥ 0. (5)323
324

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where x ≥ 0325

and y ≥ 1, we get326

(sµ + λ)p0,y = sµp0,y+1 + sµ

∞
∑

i=1

pi,y

(

γ

λ + γ

)i

327

+ rγ

(

γ

λ + γ

)n

pn,y−1, for y ≥ 1, (6)328

γ px,y + sµp0,y = sµp0,y+1 + sµ

∞
∑

i=x+1

pi,y

(

γ

λ + γ

)i−x

329

+ rγ

(

γ

λ + γ

)n−x

pn,y−1, for 0 < x ≤ n and y ≥ 1, (7)330

γ px,y + sµp0,y = sµp0,y+1+sµ

∞
∑

i=x+1

pi,y

(

γ

λ+γ

)i−x

+rγ pn,y−1,331

for x > n and y ≥ 1. (8)332
333

Probability of an empty system Summing up Eqs. (4) and (8) for y ≥ 1 yields334

γ px = sµ

∞
∑

k=1

(

γ

λ + γ

)k

px+k,335

336
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Call centers with a postponed callback offer

for x > n. Let us denote by z, a root of the related homogeneous equation. We then337

have338

γ = sµ

∞
∑

k=1

(

γ

λ + γ

)k

zk,339

340

which leads to γ (λ + γ (1 − z)) = sµγ z. This equation has a unique solution; z =341

λ+γ
sµ+γ

=
aγ

s
. Therefore, we have px+n+1 =

( aγ

s

)x
pn+1, for x ≥ 0. Summing up now342

Eqs. (3) and (7) for y ≥ 1 and x = n yields343

(1 − r)γ pn = sµ

∞
∑

k=1

(

γ

λ + γ

)k

pn+k,344

345

so we deduce that px+n = (1−r)
( aγ

s

)x
pn for x ≥ 0. We now prove by induction on x346

that pn−x =
(

s
aγ

)x

pn , for 0 ≤ x < n. This relation is clearly true for x = 0. Assume347

now that this relation holds for pn, pn−1, . . . , pn−x . Summing up now Eqs. (3) and348

(7) for y ≥ 1 yields349

γ pn−(x+1) = sµ

(

γ

λ + γ

) (

s

aγ

)x

pn + sµ

(

γ

λ + γ

)2 (

s

aγ

)x−1

pn + · · ·350

+ sµ

(

γ

λ + γ

)x (

s

aγ

)

pn + (rγ + sµ)

(

γ

λ + γ

)x+1

pn351

+ sµ(1 − r)

∞
∑

k=1

(

γ

λ + γ

)x+1+k
(aγ

s

)k

pn352

= sµ

x+1
∑

i=1

(

γ

λ + γ

)i (

s

aγ

)x+1−i

pn + γ r

(

γ

λ + γ

)x+1

pn353

+ γ (1 − r)

(

γ

λ + γ

)x+1

pn .354

355

Using
(

γ
λ+γ

) (

s
aγ

)−1
=

γ
sµ+γ

, we may write356

γ pn−(x+1) = sµ

(

s

aγ

)x+1 x+1
∑

i=1

(

γ

sµ + γ

)i

pn + γ

(

γ

λ + γ

)x+1

pn357

= sµ

(

s

aγ

)x+1
γ

sµ + γ

1 −
(

γ
sµ+γ

)x+1

1 −
γ

sµ+γ

pn + γ

(

γ

λ + γ

)x+1

pn358

= γ

(

s

aγ

)x+1

pn,359

360
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which proves the induction step. Using Eq. (6), with the same approach we also361

obtain p0 =
γ
λ

(

s
aγ

)n

pn ; therefore, px = λ
γ

( aγ

s

)x
p0 for 1 ≤ x ≤ n and px =362

(1 − r) λ
γ

( aγ

s

)x
p0 for x > n. From the last expression, the stability condition is363

aγ

s
< 1. This is equivalent to λ < sµ as for a simple M/M/s queue. Moreover,364

summing up Eq. (5) for y ≥ 0 leads to sµ(p0 − p0,0) = rγ pn . So, p0 =
p0,0

1−r a
s

(

aγ
s

)n .365

Using now Eq. (1), we finally deduce that p0 =
as

s!
p−s,0

1−r a
s

(

aγ
s

)n . Using the fact that the366

overall sum of the stationary probabilities is equal to one, we obtain the probability of367

an empty system as in Proposition 1.368

Other stationary probabilities We can show that pn+x,0 = (1 − r)
(αγ

s

)x
pn,0 for369

x > 0. The proof is identical to the proof for pn+x above.370

We now show by induction on x that371

pn−x,0 = pn,0

{(

s

aγ

)x

+
rλ

sµ − λ

((

s

aγ

)x

− 1

)}

, (9)372

373

for 0 ≤ x < n. This relation is clearly true for x = 0. Assume now that this relation374

holds for pn,0, pn−1,0, pn−x,0. One may write using Eq. (3) that375

γ pn−(x+1),0 = sµp0,1 + sµ

x
∑

k=0

(

γ

λ + γ

)x+1−k

pn−k,0376

+ sµ(1 − r)

∞
∑

k=1

(

γ

λ + γ

)x+1+k
(αγ

s

)k

pn,0.377

378

We now replace pn,0, pn−1,0, . . . , pn−x,0 by their expressions as a function of pn,0379

and sµp0,1 by rγ pn,0 (Eq. 5). We obtain380

γ pn−(x+1),0 = rγ pn,0 + sµ(1 − r)

∞
∑

k=1

(

γ

λ + γ

)x+1+k
(αγ

s

)k

pn,0381

+ sµpn,0

x
∑

k=0

(

γ

λ + γ

)x+1−k
{

(

s

aγ

)k

+
rλ

sµ − λ

(

(

s

aγ

)k

− 1

)}

.382

383

Using now
∑x

k=0

(

γ
λ+γ

)x+1−k

=
γ
λ

(

1 −
(

γ
λ+γ

)x+1
)

,
∑x

k=0

(

γ
λ+γ

)x+1−k (

s
aγ

)k

=384

γ
sµ

(

(

s
aγ

)x+1
−

(

γ
λ+γ

)x+1
)

, and
∑∞

k=1

(

γ
λ+γ

)x+1+k
(αγ

s

)k
=

λ+γ
sµ

(

γ
λ+γ

)x+2
, we385

prove the induction step. Observe that Eq. (2) is almost identical to Eq. (3) in which386

we would replace x by 0. The only difference is the multiplicative coefficient on the387

left hand side of Eq. (2). This one is λ instead of γ . Therefore, using the corrective388

coefficient
γ
λ

, we deduce the explicit expression of p0,0;389
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Call centers with a postponed callback offer

p0,0 =
γ

λ
pn,0

{(

s

aγ

)n

+
rλ

sµ − λ

((

s

aγ

)n

− 1

)}

.390

This last equation relates p0,0 and pn,0. By substituting the expression of pn,0 as a391

function of p0,0 into Eq. (9), we get392

px,0 = p0,0
λ

γ

(

s
aγ

)n−x

+ rλ
sµ−λ

(

(

s
aγ

)n−x

− 1

)

(

s
aγ

)n

+ rλ
sµ−λ

((

s
aγ

)n

− 1
)393

= p0,0
λ

γ

( aγ

s

)x
(sµ − λ(1 − r)) − rλ

( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n ,394

395

for 1 ≤ x ≤ n, and396

px,0 = p0,0(1 − r)
λ

γ

(sµ − λ)
( aγ

s

)x−n

sµ − λ(1 − r) − rλ
( aγ

s

)n ,397

for x > n.398

With the same approach, one can show by induction that pn+x,y = pn,y(1− r)
( aγ

s

)x
,399

for x > 0 and400

pn−x,y = pn,y

{(

s

aγ

)x

+
rλ

sµ − λ

((

s

aγ

)x

− 1

)}

+
rλ

sµ − λ
pn,y−1

[

1 −

(

s

aγ

)x]

,

(10)401

for 0 ≤ x < n. Combining now Eq. (6) with Eq. (10), we get402

p0,y = pn,y

γ

λ

{(

s

aγ

)n

+
rλ

sµ − λ

((

s

aγ

)n

− 1

)}

403

+
rλ

sµ − λ
pn,y−1

γ

λ

[

1 −

(

s

aγ

)n]

.404

405

This last equation relates p0,y , pn,y and pn,y−1. Since sµp0,y = rγ pn,y−1 for y ≥ 1406

(Eq. 5), we obtain a relation between p0,y and pn,y ;407

p0,y = pn,y

γ

λ

{(

s

aγ

)n

+
rλ

sµ − λ

((

s

aγ

)n

− 1

)}

408

+
λ

sµ − λ
p0,y

sµ

λ

[

1 −

(

s

aγ

)n]

.409

410

123

Journal: 291 Article No.: 0487 TYPESET DISK LE CP Disp.:2017/8/22 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

B. Legros et al.

This last equation can be finally simplified into411

pn,y =
λ

γ
p0,y

sµ − λ
( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n ,412

for y ≥ 1.413

Equation (5) gives an expression of pn,y−1 as a function of p0,y . Inserting these414

two results into Eq. (10) leads to an expression of px,y as a function of p0,y ;415

px,y =
λ

γ
p0,y

sµ − λ(1 − r)
( aγ

s

)x
− rλ

( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n ,416

for 0 < x ≤ n and y ≥ 1. Finally, from Eq. (5) we get417

pn,y =

(

rλ

sµ

sµ − λ
( aγ

s

)n

sµ − λ(1 − r) − rλ
( aγ

s

)n

)y

pn,0.418

This finishes the proof of the proposition. ⊓⊔419

3.1.2 Performance measures420

In Theorem 1, we derive the performance measures. In order to relate the performance421

measures to those of an M/M/s queue, we introduce the notation C(s, a) = P(W > 0)422

(i.e., probability of queueing in an M/M/s queue). Recall from Kleinrock (1975, p.423

103) that C(s, a) =
as

s!
s−1
∑

x=0

ax

x !
+ as

s!
1

1−a/s

· 1
1−a/s

.424

Theorem 1 We have425

Pc = r · C(s, a) ·
(1 − a/s)e−sµ(1−a/s)·K

1 − r a
s
e−sµ(1−a/s)·K

,426

P(W > K ) = C(s, a)
(1 − r a

s
)e−sµ(1−a/s)·K

1 − r a
s
e−sµ(1−a/s)·K

,427

E(W1) =

as

s!

sµ
·

1 − re−sµ(1−a/s)·K (1 + sµ(1 − a/s) · K )

(1 − a/s)2

(

(

1 − r a
s
e−sµ(1−a/s)·K

)

s−1
∑

x=0

ax

x !
+ as

s!
1−re−sµ(1−a/s)·K

1−a/s

)
,428

E(W2) =
1 + sµ · K

sµ(1 − a/s)
.429

430

Proof The approach to derive the performance measures first consists of defining the431

embedded Markov chain at specific instants chosen in order to reach the performance432

measures at arbitrary instants. Next, by letting γ and n tend to infinity we obtain the433

results.434
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Call centers with a postponed callback offer

The embedded Markov chain Arriving customers either enter service upon arrival,435

enter service from Queue 1 after some wait, or are routed to Queue 2. Call the instants436

when one of these three events occurs Q-instants. Since the events at Q-instants all437

occur one at a time, in the long run the system is identical at arrival instants and Q-438

instants. Since the Poisson arrival process of customers is independent of the system439

state, the system is identical at arrival instants and arbitrary instants. So, the system is440

also identical at arbitrary instants and Q-instants. We therefore choose to consider the441

system at Q-instants to obtain the performance measures (the arrival instants cannot442

be seen in our Markov chain).443

The Q-instants are determined by λ-transitions from state with a vacant server, sµ-444

transitions from the other states except in states (0, y) and γ -transitions from states445

(n, y), for y ≥ 0. The overall customer flow at Q-instants is identical to the customer446

flow at arrival instants and has a rate λ. Therefore, the probability at Q-instants that x447

servers are busy for 0 ≤ x < s is λ
λ

p−s+x,0 = p−s+x,0. The probability that the FIL is448

in waiting phase x and y customers are in Queue 2 is
sµ
λ

px,y for 0 < x < n or x > n,449

0 for x = 0 and
sµ+rγ

λ
pn,y for x = n. The stationary probabilities at Q-instants are450

then completely known. This allows us to derive the performance measures.451

Performance measures The approach to obtain the performance measures is to let γ452

and n tend to infinity with respect to n
γ

= K . First, we have453

lim
n,γ→∞

(aγ

s

)n

= e−sµ(1−a/s)·K .454

455

We now derive the proportion of customers who are routed to Queue 2, Pc. A customer456

moves from Queue 1 to Queue 2 due to a γ -transition from states (n, y), y ≥ 0. The457

proportion of customers which are moved from Queue 1 to Queue 2 is therefore458

Pc = lim
n, γ → ∞

r
γ

λ
pn .459

Recall from the proof of Proposition 1 that pn = λ
γ

( aγ

s

)n
p0 and p0 =

as

s!
p−s,0

1−r a
s

(

aγ
s

)n .460

Therefore,461

r
γ

λ
pn = r

(aγ

s

)n as

s!
p−s,0

1 − r a
s

( aγ

s

)n . (11)462

463

From the expression of p−s,0 in Proposition 1, we get the probability of an empty464

system in an M/M/s queue:465

lim
n, γ → ∞

p−s,0 =

[

s−1
∑

x=0

ax

x !
+

as

s!

1

1 − a/s

]−1

. (12)466

467

By applying the last result in Eq. (11), we obtain the explicit expression of Pc.468
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B. Legros et al.

We now derive the proportion of customers who waits less than K , P(W < K ). A469

customer is served from Queue 1 due to a sµ-transition from states (x, y), y ≥ 0.470

Therefore,471

P(W < K ) = lim
n, γ → ∞

p−s,0 + p−s+1,0+· · · + p−1,0+
sµ

λ
(p1+ p2+· · · + pn).472

Therefore, we get473

P(W < K )= lim
n, γ → ∞

p−s,0

⎛

⎜

⎝

s−1
∑

x=0

ax

x !
+

as

s!

1 − a/s

λ + γ

γ

1 −
(

λ+γ
sµ+γ

)n

1 − r a
s

(

λ+γ
sµ+γ

)n

⎞

⎟

⎠
;474

this in turn leads to the result of the theorem.475

Consider now the served customers from Queue 1. A served customer from Queue476

1 waits x γ -phases with probability
sµ
λ

px for x > 0, and each phase has an expected477

duration of 1/γ . Therefore,478

(1 − Pc)E(W1) = lim
n, γ → ∞

sµ

λ

∞
∑

x=1

x

γ
px479

= lim
n, γ → ∞

p0
sµ

γ 2

aγ

s

−r(n + 1)
(

1 −
aγ

s

) ( aγ

s

)n
+ 1 − r

( aγ

s

)n

(

1 −
aγ

s

)2
.480

481

In order to compute this limit, we separate the last expression in three parts. First, we482

may write483

lim
n, γ → ∞

p0 = lim
n, γ → ∞

as

s!
p−s,0

1 − r a
s

( aγ

s

)n =

as

s!

[

s−1
∑

x=0

ax

x !
+ as

s!
1

1−a/s

]−1

1 − r a
s
e−sµ(1−a/s)·K

. (13)484

485

Second, we have486

lim
n, γ → ∞

sµ

γ 2

aγ

s

1
(

1 −
aγ

s

)2
= lim

n, γ → ∞

sµ

(s − a)2

(

a +
γ
µ

) (

s +
γ
µ

)

γ 2
(14)487

=
1

sµ(1 − a/s)2
.488

489

Finally, one may write490

−r(n + 1)

(

1 −
aγ

s

) (aγ

s

)n

+ 1 − r
(aγ

s

)n

491

= 1 − r
(aγ

s

)n

− r
(n + 1)(s − a)

s + γ /µ

(aγ

s

)n

492
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Call centers with a postponed callback offer

Applying the assumption n
γ

= K yields493

lim
n, γ → ∞

−r(n + 1)

(

1 −
aγ

s

) (aγ

s

)n

+ 1 − r
(aγ

s

)n

494

= 1 − re−sµ(1−a/s)·K (1 + sµ(1 − a/s) · K ). (15)495
496

Combining Eqs. (13), (14) and (15) leads to the expression of E(W1).497

We now consider the expected waiting time of customers who are routed to Queue498

2. The probability of having y customers in Queue 2 at Q-instants (y ≥ 0) is499
∑∞

x=1
sµ
λ

px,y +
rγ
λ

pn,y . Using the results of Proposition 1, we can compute explicitly500

this expression by letting n and γ tends to infinity.501

3.2 Numerical analysis with abandonment502

The complexity of the transition structure does not allow us to obtain explicit expres-503

sions for the performance measures with abandonment. However, since the transition504

structure is completely known, using space state truncation with a bound, D1, for505

the number of waiting phases in Queue 1 and a bound, D2, for the number of cus-506

tomers in Queue 2, we can derive the performance measures including the proportion507

of abandonment.508

Let S be the state space. Consider the cut between A1 = {(−s, 0), . . . , (x, 0)} and509

S\A1, where −s ≤ x ≤ D1. By equating flows across the cut, one may write510

λpx,0 = (s + x + 1)µpx+1,0, for − s ≤ x < 0, (16)511

λp0,0 = sµp0,1 +

(

sµ + γ
β

γ + β

) D1
∑

i=1

pi,0qi,0, (17)512

γ px,0 = sµp0,1 +

(

sµ + γ
β

γ + β

) D1
∑

i=x+1

pi,0

x
∑

k=0

qi,k, for 0 < x ≤ n, (18)513

γ px,0 + rγ pn,0 = sµp0,1 +

(

sµ + γ
β

γ + β

) D1
∑

i=x+1

pi,0

x
∑

k=0

qi,k, for n < x < D1.

(19)

514

515

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where 0 ≤ y ≤ D2.516

This leads to517

rγ pn,y = sµp0,y+1, for 0 ≤ y < D2. (20)518
519

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where −s ≤520

x ≤ D1 and 1 ≤ y ≤ D2, we get521
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B. Legros et al.

(sµ + λ)p0,y = sµp0,y+1 +

(

sµ + γ
β

γ + β

) D1
∑

i=1

pi,yqi,0 + rγ qn,0 pn,y−1, (21)522

523

for 1 ≤ y < D2,524

γ px,y + sµp0,y = sµp0,y+1 +

(

sµ + γ
β

γ + β

) D1
∑

i=x+1

pi,y

x
∑

k=0

qi,k525

+ rγ

x
∑

k=0

qn,k pn,y−1, (22)526

527

for 0 < x ≤ n, and 1 ≤ y < D2,528

γ px,y + sµp0,y = sµp0,y+1 +

(

sµ + γ
β

γ + β

) D1
∑

i=x+1

pi,y

x
∑

k=0

qi,k + rγ pn,y−1

(23)

529

530

for n < x < D1 and 1 ≤ y < D2.531

We then get a finite number of equations due to the state space truncation. In addition532

to the normalizing condition (i.e., the sum of the overall probabilities is equal to one),533

on may obtain numerically all stationary probabilities.534

Arriving customers either enter service upon arrival, enter service from Queue 1535

or Queue 2 after some wait, abandon from Queue 1 after experiencing some wait, or536

move from Queue 1 to Queue 2 after waiting n phases. The proportion of customers537

which accepts the callback offer, Pc, is then given by538

Pc = r
γ

λ

D2
∑

y=0

pn,y .539

The proportion of customers who have waited less than K time units, P(W < K ), is540

P(W < K ) =

−1
∑

x=−s

px,0 +

D2
∑

y=0

n
∑

x=1

sµ + γ
β

γ+β

λ
px,y .541

The proportion of abandonment, Pa , is542

Pa =

D2
∑

y=0

D1
∑

x=1

γ
β

γ+β

λ
px,y .543

The expected waiting time in Queue 1, E(W1), is given by544

(1 − Pc)E(W1) =

D2
∑

y=0

D1
∑

x=1

sµ + γ
β

γ+β

λ

x

γ
px,y .545
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Call centers with a postponed callback offer

We now consider the expected waiting time of customers who are routed to Queue546

2. The probability of having y customers in Queue 2 (y ≥ 0) is
∑D1

x=1

sµ+γ
β

γ+β

λ
px,y +547

rγ
λ

pn,y . This leads to the expected number in Queue 2. Next, applying Little’s Law548

leads to E(W2).549

One difficulty in the computation is the choice for the two parameters γ and D1.550

The truncation parameter D1 introduces the risk of having a large probability mass in551

the truncated state, particularly for large values of γ . The value of γ has an important552

influence on the approximation. Increasing γ means that more states are required553

for the truncation. At the same time, γ should be sufficiently large to represent the554

continuous elapsing of time.555

4 Operational findings, discussions and insights556

We investigate the issues related to a postponed callback offer. We derive a series of557

insights which can be proved in the case without abandonment. The proven results558

are next discussed with abandonment. More precisely, in Sect. 4.1, we show how559

a postponed callback offer can improve a waiting time percentile. In Sect. 4.2, we560

analyze how the customer’s behavior may impact the system performance and what561

may be a customer rational strategy. In Sect. 4.3, we investigate the impact of the562

control parameter K on the performance measures to obtain recommendations to563

better control the system performance. Finally, in Sect. 4.4, we conduct a comparison564

between our postponed callback option and a callback option given at customer’s565

arrival as developed in the literature (e.g., see Armony and Maglaras 2004a; Legros566

et al. 2016).567

4.1 The callback offer, a tool to improve a waiting time percentile568

We evaluate the impact of the callback offer on P(W < K ).569

Analysis without abandonment We denote by R the ratio between P(W > K ) with570

the callback offer and P(W > K ) without the callback offer. Without the callback571

offer, we have P(W > K ) = C(s, a) · e−sµ(1−a/s)·K . Therefore, using the expression572

of P(W > K ) in Theorem 1, we get573

R =
1 − r a

s

1 − r a
s
e−sµ(1−a/s)·K

≤ 1.574

575

So, as a first insight, we obtain576

Insight 1 The callback offer allows the manager to reduce a waiting time percentile.577

In Fig. 2, we represent P(W > K ) and R as a function of the workload for three578

different values for the callback acceptance parameter r . We observe that the higher579

is r , the smaller are P(W > K ) and R. This can be proved by580
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B. Legros et al.

Fig. 2 P(W > K ) (µ = 1, K = 0.5, β = 0). a s = 1, b s = 1, c s = 50 and d s = 50

∂ P(W > K )

∂r
= −C(s, a)e−sµ(1−a/s)·K

a
s
(1 − e−sµ(1−a/s)·K )

(

1 − r a
s
e−sµ(1−a/s)·K

)2
< 0, and581

∂ R

∂r
= −

a
s
(1 − e−sµ(1−a/s)·K )

(

1 − r a
s
e−sµ(1−a/s)·K

)2
< 0.582

583

One would expect that the impact of accepting the callback offer is stronger under584

high workload situations. Yet, the highest improvement is for intermediate workload585

situations as shown in Fig. 2b, d. This can be explained as follows. For low workload586

situations, the probability of waiting less that the threshold K is high. Therefore,587

most customers do not hear the callback offer. Under high workload situations, most588

customers hear the callback offer, but whether they accept it or not, they will wait589

more than K . The comparison between Fig. 2a and c illustrates that the absolute590

improvement is stronger in small call centers. The reason is related to the pooling591

effect. It is well established that the pooling effect in large call centers reduces the592

improvement that a good routing strategy could bring (Bassamboo et al. 2010; Legros593

et al. 2015). In summary, our observations lead to a second insight:594

Insight 2 The more customers are likely to accept the callback offer, the more strongly595

P(W > K ) can be improved. The maximal improvement is for intermediate workload596

situations and for small call center size.597

Impact of the abandonment The callback offer can be used to prevent some customers598

with too long waiting time to leave the system. It is then interesting to observe how599

123

Journal: 291 Article No.: 0487 TYPESET DISK LE CP Disp.:2017/8/22 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Call centers with a postponed callback offer

Fig. 3 P(W > K ) (µ = 1,

s = 10, K = 0.5, r = 90%)

abandonment may impact P(W > K ). In Fig. 3, we give P(W > K ) as a function of600

the ratio a/s for different values of the abandonment rate. An interesting observation601

is that the abandonment feature strongly helps to reduce P(W > K ). This is particu-602

larly apparent in high workload situations. Callback customers then benefit from the603

abandonment of customers in Queue 1 because the abandonment participates in the604

departure flow from Queue 1.605

4.2 Customer’s behavior606

We investigate here the customer’s reaction to the callback offer.607

Impact of r on E(W2) The parameter r is assumed to capture the customer’s behavior.608

An interesting observation is that this parameter r is not part of the expression of609

E(W2) without abandonment. This means that the delay for callback customers is610

insensitive to the willingness of customers to accept the callback offer. Hence, we get611

the following insight:612

Insight 3 Without abandonment, the delay for callback customers is insensitive to the613

parameter r .614

However, Fig. 4 reveals that with abandonment, the parameter r influences the615

delay for callback customers. More precisely, as r increases, E(W2) increases. This616

observation is intuitive. As r increases, the proportion of callback customers also617

increases. These customers do not abandon which in turn leads to a higher congestion618

of the system.619

Rational customers We study here customers’ rational behavior. First, with rational620

customers, one may neglect the exponential patience. As shown in Mandelbaum and621

Shimkin (2000), rational abandonments can occur only upon arrival (zero or infinite622

patience for each customer).623

We then investigate the willingness to accept the callback offer without abandon-624

ment. The choice for a customer to accept the callback offer or not can be seen as the625

result of a rational decision. When hearing the callback offer at time K , a customer has626

the choice to stay in Queue 1 with a remaining expected waiting time of 1
sµ

(because627
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B. Legros et al.

Fig. 4 E(W2) (µ = 1, s = 10,

K = 0.5, λ = 9.9)

the callback offer is given to the first customer in line) or can choose to be called back628

later with an expected delay of E(W2) − K . Of course, accepting the callback offer629

leads to higher waiting time, but waiting to be called back is less costly/annoying than630

continuing to wait for an agent to be available. We capture by c1 and c2 the cost per631

time unit of waiting in the initial queue (Queue 1) or in the callback queue (Queue 2),632

respectively.633

The parameter r should therefore be634

r = arg min

(

(1 − r)c1
1

sµ
+ rc2(E(W2) − K )

)

,635

with c1 ≥ c2. Since E(W2) is insensitive to r , the optimal value for r is either 0 or 1.636

More precisely, we get:637

Insight 4 Only two rational customer strategies are possible. Either all customers638

who hear the callback offer accept this offer if c2
1+λ·K
1−a/s

< c1; otherwise, they all639

reject the offer.640

The condition c2
1+λ·K
1−a/s

< c1 induces that the higher the workload is, the more641

likely customers will refuse the callback offer. Intuitively, this can be explained by642

the long delays for callback customers in case of high workload situations due to643

their low priority. The second consequence is that the smaller is K , the more likely644

a customer will accept the callback offer. The reason is related to the proportion of645

callback customers. When K is small, a high proportion of customers will hear the646

offer. Therefore, if they all accept the offer, the proportion of those who are in Queue647

1 is small and the effect of the low prioritization is reduced which in turn makes the648

callback offer attractive.649

4.3 The control parameter K650

The control parameter for the call center is the time at which the callback offer is651

proposed, K .652
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Call centers with a postponed callback offer

Fig. 5 E(W1) (s = 10, µ = 1,

r = 0.8)

With rational customers As mentioned in Sect. 4.2, by choosing a too high value for653

K , a call center with rational customers will induce a rejection of the callback offer654

(r = 0). In this case, the value of K is irrelevant. Under a waiting time threshold for the655

callback offer, all customers accept the offer (r = 1). In the case r = 1, both E(W1)656

and E(W2) are strictly increasing in K . This argue for a value of K = 0. However,657

in that case with r = 1 and K = 0, the call center manager may loose the control658

of the proportion of callback customers and the inbound queue will always be empty.659

This might be unwanted because inbound calls can be a source of revenue for the call660

center; contrary to outbound calls they may pay a waiting cost per waiting time unit.661

So, the choice of K also depends on the wanted proportion of callback customers.662

This proportion, Pc, is strictly decreasing in K . This can be seen by663

∂ Pc

∂K
= −sµr · C(s, a) ·

(1 − a/s)2e−sµ(1−a/s)·K

(1 − r a
s
e−sµ(1−a/s)·K )2

< 0.664

With irrational customers In the case r < 1, the elements mentioned above still hold665

except the monotonicity of E(W1). In Fig. 5, we present E(W1) as a function of K666

for different workload situations.667

Proposition 2 If 0 < r < 1, there exists a unique value for K which minimizes668

E(W1). It is the unique solution in K of669

x A + re−x = 1, (24)670
671

with x = sµK (1 − a/s) and A =

s−1
∑

x=0

ax

x !
+ as

s!(1−a/s)

a
s

s−1
∑

x=0

ax

x !
+ as

s!(1−a/s)

.672

Note that in the case r = 0, E(W1) is insensitive to K .673

Proof We obtain Eq. (24) from ∂ E(W1)
∂K

= 0. Consider the function f (x) = x A +674

re−x − 1. We want to show that f (x) = 0 has a unique solution. We have f ′(x) =675

A − re−x . Since x > 0, r < 1 and A > 1, we have f ′(x) > 0 for x ≥ 0. So,676
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Fig. 6 Impact of the abandonment (s = 10, r = 0.8, a/s = 0.95, µ = 1). a E(W1) and b E(w2)

the function f is increasing in x for x ≥ 0. Moreover, f (0) = r − 1 < 0 and677

lim
x→+∞

f (x) = +∞. This proves that there exists a unique solution of Eq. (24). ⊓⊔678

One way to obtain the unique solution of Eq. (24) is to apply the Newton algorithm679

by defining recursively xk by x0 = 0 and xk+1 = xk −
f (xk )
f ′(xk )

for k ≥ 0 and f defined680

as in the proof of Proposition 2. Note that since f ′(x) > 0 for x ≥ 0, the recursion is681

well defined.682

The reason which explains why E(W1) is not increasing in K is the definition of the683

callback offer. Increasing K does not necessarily mean that less customers have the684

callback proposition. Recall that only the first customer in line can hear the callback685

offer. In case of high workload situations and low value for K , the probability to be686

the FIL at waiting time K is low (except if r = 1). Most likely, at waiting time K687

a customer will have other customers in front of him and will not have the callback688

offer. Increasing K in this case leads to a higher chance to be the FIL at waiting time689

K . Therefore, increasing K leads to a higher chance to leave Queue 1. This explains690

how E(W1) can be decreasing in K . In case of low workload situations, increasing K691

reduces the proportion of callback customers and therefore increases E(W1).692

With abandonment Figure 6a, b illustrates the impact of K on E(W1) and E(W2),693

for different values of the abandonment rate β. We observe that with abandonment,694

the value of K which minimizes E(W1) is higher than the one obtained without695

abandonment. With abandonment, the increasing of the number of customers in Queue696

1 increases also the departure rate (after abandonment or service) of inbounds from the697

system, which makes the system more efficient and may decrease E(W1). Therefore,698

higher values for K may lead to a better performance for inbound calls. We observe699

that E(W2) is still increasing in K (Fig. 6b) although the abandonment in Queue 1700

also reduces the waiting time in Queue 2.701

The abandonment plays a important role in the choice of K . Since by definition702

outbound calls do not abandon, reducing K reduces abandonment, which is positive.703

Yet, this may also increase the workload and lead to higher waiting time. This leads704

to another insight.705
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Call centers with a postponed callback offer

Insight 5 The callback offer may help to reduce the proportion of abandonment.706

However, the time at which the callback offer is proposed should be carefully chosen707

in order to avoid congestion.708

4.4 Comparison with a non-postponed callback offer709

The callback offer studied in this article differs from the one in the literature by the710

instant at which it is proposed. In most callback models, the callback offer is given711

at arrival of a new call if the expected waiting time is too high (e.g., see Armony and712

Maglaras 2004a; Legros et al. 2016). Instead, we consider in this article a callback offer713

given after experimenting some wait. We propose to conduct a comparison between714

these two strategies.715

We call Model A our postponed callback offer and by Model B a callback offer716

proposed at arrival of a new call. For Model B, we assume that at and above a given717

number of customers in Queue 1 (or equivalently at and above a given expected waiting718

time for an arriving customer) the callback offer is proposed to all arriving customers.719

Hence, in Model B, Queue 1 has a limited capacity n. All arriving customers are routed720

to Queue 2 if Queue 1 size is equal to n. Therefore, n is the control parameter of Model721

B. The performance measures in Model B can be obtained through a Markov chain722

analysis or can be deduced from Proposition 3 of Legros et al. (2016). We obtain the723

following performance measures for Model B:724

Pc = C(s, a) ·
(1 − a/s)

(

a
s

)n

1 −
(

a
s

)n+1
,725

E(W1) =

as

s!

sµ
·

1 −
(

a
s

)n
(1 + n(1 − a/s))

(1 − a/s)2

(

(

1 −
(

a
s

)n+1
) s−1

∑

x=0

ax

x !
+ as

s!

1−( a
s )

n

1−a/s

)
,726

E(W2) =
1 + n

sµ(1 − a/s)
.727

The difficulty in the comparison is the customer’s reaction to the offer. It may differ728

whether the callback offer is given at arrival or later. To avoid this complexity, we729

assume that all customers accept the callback offer in both models. This corresponds730

to a rational behavior in Model A.731

Comparison without abandonment In Theorem 2, we consider a context for which732

the call center manager wants to maintain the proportion of callback customers at733

a given level. Under this constraint which forces the two models to have the same734

proportion of callback customers, we prove that our postponed callback offer leads to735

a better expected waiting time for inbound calls and a worse expected waiting time736

for outbound ones.737
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B. Legros et al.

Fig. 7 Comparison between the callback offers (s = 10, r = 1, µ = 1, β = 0, K = 0.5, n ln(a/s) =

−sµ(1 − a/s)K ). a E(W1) and b E(W2)

Theorem 2 Given that the control parameters K (Model A) and n (Model B) are738

chosen such that the proportion of callback customers in identical in both models,739

E(W1) is lower in Model A and E(W2) is lower in Model B.740

Proof To obtain the same proportion of callback customers in both models, the control741

parameters n and K should be related by
(

a
s

)n
= e−sµ(1−a/s)K . This equation is742

equivalent to n ln(a/s) = −sµ(1 − a/s)K . Let us denote by E(W1)A and E(W1)B ,743

the expected waiting time of inbound calls in Model A and B. We have744

E(W1)A − E(W1)B745

=

as

s!

sµ
·

e−sµ(1−a/s)·K (n − sµK )

(1 − a/s)

(

(

1 − a
s
e−sµ(1−a/s)·K

)

s−1
∑

x=0

ax

x !
+ as

s!
1−e−sµ(1−a/s)·K

1−a/s

)
.746

747

Thus, the sign of this difference depends on the sigh of n − sµK . One may write,748

n − sµK = −
sµK

ln(a/s)
(ln(a/s) + 1 − a/s).749

Since a/s < 1, −
sµK

ln(a/s)
> 0. Thus, the sign of the expression depends on the sign of750

ln(a/s)+1−a/s. Consider the function in x , f (x) = ln(x)+1−x for x > 0. We have751

f ′(x) = 1
x

− 1. So f ′(x) > 0 for 0 < x ≤ 1. Since f (1) = 0, ln(a/s)+ 1 −a/s < 0.752

This proves that E(W1)A − E(W1)B < 0. With the same approach, we can prove that753

the expected waiting time for outbound calls is higher with Model A. ⊓⊔754

In Fig. 7a, b, we represent E(W1) and E(W2) as a function of the workload for755

Model A and Model B assuming a fixed value of K = 0.5 for Model A and n is adjusted756

in Model B with the relation n ln(a/s) = −sµ(1 − a/s)K such that the two models757

achieve the same proportion of callback customers. An interesting observation is that758

the improvement for E(W1) with Model A is higher under high workload situations,759

whereas the improvement for E(W2) with Model B is higher under low workload760

situations. This leads to a last insight.761

Insight 6 A postponed callback offer is preferred under high workload situations.762
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Call centers with a postponed callback offer

Fig. 8 Comparison between the callback offers (s = 10, r = 1, µ = 1, β = 10, n = 5). a Pa , b E(W1)

and c E(W2)

Comparison with abandonment In Fig. 8a–c, we represent Pa , E(W1) and E(W2)763

as a function of the arrival rate for Model A and Model B assuming a fixed value of764

n = 5 for Model B and K is adjusted in Model A such that the two models achieve the765

same proportion of callback customers. We obtain the same qualitative observations as766

shown in Fig. 7. As mentioned in Insight 6, with abandonment the postponed callback767

offer is preferred under high workload situation. In addition, Fig. 8a reveals that for a768

given proportion of callback customers, the postponed callback offer achieves a lower769

proportion of abandonment. This is an essential value of the postponed callback offer;770

it allows the call center to reduce the proportion of lost customers.771

5 Conclusion772

In this article, we propose a new callback model. After experimenting some wait, the773

first customer in line receives a callback proposition and chooses to accept it or not.774

This simple model differs from the one in the literature where the callback offer is775

given at customers’ arrival. We first develop a Markov chain analysis to derive the776

performance measures without abandonment. The same approach is also applied to777

compute numerically the performance measures with abandonment. This allows us778

to better understand the effect of the callback offer on the call center performance.779

We find that our callback offer succeeds in reducing a percentile of the waiting time.780

In particular, the realized improvement can be significant in intermediate workload781

situations, with abandonment and small call center size. One surprising result is that782
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B. Legros et al.

the delay for callback customers is insensitive to the willingness of customers to accept783

the callback offer without abandonment. This result is, however, no longer valid with784

abandonment. This leads to only two rational customer behaviors: either they all accept785

or they all reject the callback offer. Next, we evaluate how to derive the optimal value786

of K without abandonment and show how this parameter can be efficiently used to787

reduce the proportion of abandonment. Finally, we show that our postponed callback788

offer outperforms the existing ones in reducing the proportion of abandonment and789

the expected waiting time of inbound calls.790

Several avenues are open for future research. It would be interesting to develop a791

callback offer with a state-dependent starting time. This may give a trade-off between792

the benefits of the postponed and non-postponed callback offer. In addition, more com-793

plexity could be included in the model like retrials and reconnections, time-dependent794

parameters or other type of service time or patience distributions.795
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